Ultra High Performance Unvented Direct Hot Water Cylinder

EUHPC25045V-DR


Product Description

Element Ultra High Performance unvented hot water cylinders are built to a high standard of quality and are manufactured from high grade duplex stainless steel. The standard operating pressure of the Element range starts at 4.5 bar, with 6 bar available where required, and Inlet and outlet connections are 28mm as standard allowing high flow rates of up to 77 l/min – a high pressure, high flow solution.

The Element Direct cylinders are supplied as standard with a combination inlet valve (incorporating pressure reducing valve, safety relief valve, balanced cold water connection, and non-return valve), factory-fitted temperature and pressure relief valve, 2 x 3kW immersion heaters, secondary return connection, and a suitably sized expansion vessel providing a complete package for your installation.

Dimensions

Height (H)	1752 mm
Outer Diameter (D)	576 mm
Weight	50 kg

ErP Rating

PRODUCT DATA SHEET

Specification

Inlet connection size	28 mm
Outlet connection size	28 mm
Secondary Return Connection	1/2" BSP
Immersion Heater	2 x 3kW 1ph
Insulation Thickness	60 mm
Volume (Nominal)	250 ltrs
Pressure Range	4.5 bar
Expansion Vessel	35 ltrs
Heat Loss	1.52 kWh/24hr @ 65°C
Reheat Time**	99 mins

- Approvals: CE, UKCA, WRAS, ISO
- Building Standards: BS 853-1-1996 & BS-12-897
- Building Regulations: Part G & L
- Guarantee: internal cylinder 25 years. Ancillary components 1 year

^{*}Based on primary flow / return temp of 80/60 °C

^{**}Based on 70% draw-off at ΔT 45°C.

